Sains Malaysiana 54(1)(2025): 21-31

http://doi.org/10.17576/jsm-2025-5401-03

 

The Potential of CO2 Sequestration from Basaltic Rock in Peninsular Malaysia

(Potensi Penyerapan CO2 daripada Batuan Basaltik di Semenanjung Malaysia)

 

AHMAD FAUZAN YUSOFF, HIJAZ KAMAL HASNAN*, MUHAMMAD HATTA ROSELEE, KHAIRUL AZLAN MUSTAPHA & AZMAN ABDUL GHANI

 

Department of Geology, Faculty of Science, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 18 April 2024/Accepted: 7 November 2024

 

Abstract

Basaltic rock is a efficient for long-term solution in carbon dioxide (CO₂) sequestration because of its ability to chemically bind CO₂ in stable and form a solid mineral, which minimizes the risk of leakage and for permanent storage. This study investigates the mineralogy and geochemistry of Segamat and Kuantan basalts in Peninsular Malaysia to evaluate their suitability for mineral carbonation. Petrographic and mineralogical analyses indicate basalt contains silicate minerals, which are plagioclase (50-60)%, pyroxene (20-30)% and olivine (10-20)% that are highly conducive to CO2 mineral carbonation. Calcite, magnesite, and siderite are expected to form carbonate minerals through chemical reactions. FESEM analysis shows that basaltic rocks have microcracks and micropores, which are tiny spaces within the rock. These structures provide pathways and space for CO₂ to flow and react with the rock, making it easier for the gas to be stored as solid carbonates. This porosity enhances CO₂ absorption and mineralization, improving the efficiency of carbon sequestration. The strategic location of Kuantan near seawater sources offers unlimited access during CO2 injection activities. Both regions exhibit metaluminous properties that are compatible with a diverse range of mineral carbonation techniques. The Segamat and Kuantan basalts are ideal for CO₂ mineral carbonation due to their reactive silicate minerals, potential for carbonate formation (calcite, magnesite, siderite), and favorable microcrack structures. Their metaluminous, silica-undersaturated composition and Kuantan’s proximity to water sources enhance their potential for effective CO₂ storage and mineralization.

 

Keywords: Carbon dioxide sequestration; Kuantan basalt; mineral carbonation; Segamat basalt

 

Abstrak

Batuan basal adalah berkesan untuk jangka panjang bagi pengasingan karbon dioksida (CO₂) kerana kemampuannya untuk menggabungkan CO₂ secara kimia dalam bentuk mineral pepejal yang stabil, yang meminimumkan risiko kebocoran dan memastikan penyimpanan yang kekal. Penyelidikan ini merangkumi aspek mineralogi dan geokimia basal dari Segamat dan Kuantan di Semenanjung Malaysia untuk menilai kesesuaian terhadap karbonasi mineral. Analisis petrografi dan mineralogi menunjukkan bahawa basal mengandungi mineral silikat, iaitu plagioklas (50-60)%, piroksen (20-30)% dan olivin (10-20)% yang sangat sesuai untuk karbonasi mineral CO₂. Kalsit, magnesit dan siderit dijangka terbentuk melalui reaksi kimia. Analisis FESEM menunjukkan bahawa batuan basal mempunyai mikro-retakan dan mikro-pori, yang merupakan ruang kecil dalam batu. Struktur ini menyediakan laluan dan ruang untuk CO₂ mengalir dan bertindak balas dengan batu, memudahkan gas disimpan sebagai karbonat pepejal. Kekosongan ini meningkatkan penyerapan CO₂ dan mineralisasi serta memperbaiki kecekapan pengasingan karbon. Lokasi strategik Kuantan yang dekat dengan sumber air laut menawarkan akses tanpa had semasa aktiviti suntikan CO₂. Kedua-dua kawasan menunjukkan sifat metaluminous yang serasi dengan pelbagai teknik karbonasi mineral. Basal Segamat dan Kuantan adalah sesuai untuk karbonasi mineral CO₂ kerana mineral silikat reaktif yang ada berpotensi untuk pembentukan karbonat (kalsit, magnesit, siderit) serta struktur mikro-retakan yang secara semula jadi ada. Komposisi metaluminous dan kekurangan silika serta jarak Kuantan dengan sumber air meningkatkan potensi mereka untuk penyimpanan dan mineralisasi CO₂ yang berkesan.

 

Kata kunci: Karbonasi mineral; Kuantan basal; penjerapan karbon dioksida; Segamat basal

 

REFERENCES

Alfredsson, H.A., Oelkers, E.H., Hardarsson, B.S., Franzson, H., Gunnlaugsson, E., Gislason, S.R. 2013. The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. International Journal of Greenhouse Gas Control 12: 399-418.

Ayub, S.A., Haylay, T., Omeid, R. & Amin, B.P. 2020. Potential for CO2 mineral carbonation in the Paleogene Segamat Basalt of Malaysia. Minerals 10(12): 1045.

Bignell, J.D. & Snelling, N.J. 1977. Geochronology of Malayan Granites. Overseas Geology and Mineral Resources 47: 71.

Callow, B., Falcon-Suarez, I., Matter, J.M., Ramkumar, M. & Benning, L.G. 2018. Geoengineering applications for basalt rock-an overview of the potential for CO2 mineral carbonation and storage. The Geological Society of London. p. 660.

Chakraborty, K.R. 1977. Olivine Nephlinite and limburgite from Kuantan Pahang. Warta Geologi 3(1): 1-5.

Debon, F. & Le Fort, P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Earth Science 73: 135-149.

Declercq, J., Bosc, O. & Oelkers, E.H. 2013. Do organic ligands affect forsterite dissolution rates? Applied Geochemistry 39: 69-77.

Deer, W.A., Howie, R.A. & Zussman, J. 1992. An Introduction to the Rock-Forming Minerals. 2nd ed. Essex: Longman Scientific & Technical.

Dessert, C., Dupré, B., Gaillardet, J., François, L.M. & Allègre, C.J. 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology 202(3-4): 257-273.

Fitch, F.H. 1951. The geology and mineral resouces of the neighbourhood of Kuantan, Pahang. Geological Survey Department Federation of Malaya, Memoir 6. p. 144.

Gavurova, B., Rigelsky, M. & Ivankova, V. 2021. Greenhouse gas emissions and health in the countries of the European Union. Frontiers in Public Health 9: 756652.

Gerdemann, S.J., O’Connor, W.K., Dahlin, D.C., Panner, L.R. & Rush, H. 2007. Ex situ aqueous mineral carbonation. Environmental Science Technology 41: 2587-2593.

Ghani, A.A. & Taib, N.I. 2007. New trace, major and rare earth elements data for Early Pleistocene alkali olivine basalt and olivine nephlinites from Kuantan Pahang: Plume related rift volcanics or wrench related crustal extension. Bulletin Geological Society Malaysia 53: 111-117.

Ghoshal, S. & Zeman, F. 2010. Carbon dioxide (CO2) capture and storage technology in the cement and concrete industry. In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology, edited by Maroto-Valer, M.M. Cambridge: Woodhead Publishing. pp. 469-491.

Gifkins, C., Herrmann, W. & Large, R. 2005. Altered Volcanic Rocks: A Guide to Description and Interpretation. Hobart: University of Tasmania.

Gislason, S.R. & Oelkers, E.H. 2014. Geochemistry. Carbon storage in basalt. Science (New York, N.Y.) 344(6182): 373-374.

Gislason, S.R., Broecker, W.S., Gunnlaugsson, E., Snæbjörnsdóttir, S., Mesfin, K.G., Alfredsson, H.A., Aradottir, E.S., Sigfusson, B., Gunnarsson, I. & Stute, M. 2014. Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia 63: 4561-4574.

Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W.S., Matter, J.M. & Stute, M. 2010. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control 4: 537-545.

Grubb, P. 1965. Undersaturated potassic lavas and hypabyssal intrusives in north Johore. Geological Magazine 102: 338-346.

Haile, N.S., Beckinsdale, R.D., Chakraborty, K.R., Abdul Hanif Hussein & Hardjono, T. 1983. Palaeomagnetism, geochronology and petrology of the dolerite dikes and basaltic lavas from Kuantan, West Malaysia. Bulletin Geological Society Malaysia 16: 71-85.

Irvine, T.M. & Baragar, W.R. 1971. A guide to the chemical classification of common volcanic rocks. Canada Journal Earth Science 8: 523-548.

Koukouzas, N., Koutsovitis, P., Tyrologou, P., Karkalis, C. & Arvanitis, A. 2019. Potential for mineral carbonation of CO2 in Pleistocene basaltic rocks in Volos Region (Central Greece). Minerals 9: 627.

Lee, H., Kim, T.W., Kim, S.H., Lin, Y.W., Li, C.T., Choi, Y. & Choi, C. 2023. Carbon dioxide capture and product characteristics using steel slag in a mineral carbonation plant. Processes 11(6): 1676.

McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y.J., Dooley, J.J. & Davidson, C.L. 2006. Potential for carbon dioxide sequestration in flood basalts. Journal Geophysical Research Solid Earth 111: B12201.

Middlemost, E.A.K. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews 37: 215-224.

Ng, T.F., Tate, R.B. & Tan, D.N.K. 2008. Geological Map of Peninsular Malaysia. Kuala Lumpur: University Malaya/Geological Society of Malaysia.

Nunes, L.J.R. 2023. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 10(4): 66.

Oelkers, E.H., Gislason, S.R. & Matter, J. 2008. Mineral carbonation of CO2Elements 4(5): 333-337.

Peccerillo, A. & Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral Petrol 58: 63-81.

Raj, J.K. 1990. The Kuantan Basalts - A multi-vent origin. Warta Geologi 16(5): 203-210.

Rasool, M.H. & Ahmad, M. 2023. Reactivity of Basaltic minerals for CO2 sequestration via in situ mineralization: A review. Minerals 13(9): 1154.

Rosenbauer, R.J., Thomas, B., Bischoff, J.L. & Palandri, J. 2012. Carbon sequestration via reaction with Basaltic rocks: Geochemical modelling and experimental results. Geochimica et Cosmochimica Acta 89: 116-133.

Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. & Maroto-Valer, M. 2014. A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews 43: 8049-8080.

Schaef, H.T., McGrail, B.P. & Owen, A.T. 2010. Carbonate mineralization of volcanic province basalts. International Journal of Greenhouse Gas Control 4: 249-261.

Shand, S.J. 1943. The Eruptive Rocks. 2nd ed. New York: John Wiley. p. 444.

Snæbjörnsdóttir, S.Ó., Wiese, F., Fridriksson, T., Ármansson, H., Einarsson, G.M. & Gislason, S.R. 2014. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia 63: 4585-4600.

Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. & Working Group I Technical Support Unit. 2013 Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Tajuddin, R.R.M. & Masseran, N. 2023. Quantifying haze effect using air pollution index data. Sains Malaysiana52(12): 3603-3618.

Taksavasu, T., Arin, P., Khatecha, T. & Kojinok, S. 2024. Microtextural characteristics of ultramafic rock-forming minerals and their effects on carbon sequestration. Minerals 14(6): 597.

Ye, Z., Liu, X., Sun, H., Dong, Q., Du, W. & Long, Q. 2022. Variations in permeability and mechanical properties of basaltic rocks induced by carbon mineralization. Sustainability 14(22): 15195.

Yuh, I.P., Evarts, R.C. & Conrey, R.M. 2022. X-ray Fluorescence Geochemistry of Columbia River Basalt Group Rocks in the Western Columbia River Gorge. U.S. Geological Survey Data Release.

 

*Corresponding author; email: hijazzains@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next